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Tactile nerve fibers fall into a few classes that can be readily distin-
guished based on their spatiotemporal response properties.
Because nerve fibers reflect local skin deformations, they individu-
ally carry ambiguous signals about object features. In contrast, cor-
tical neurons exhibit heterogeneous response properties that
reflect computations applied to convergent input from multiple
classes of afferents, which confer to them a selectivity for behav-
iorally relevant features of objects. The conventional view is that
these complex response properties arise within the cortex itself,
implying that sensory signals are not processed to any significant
extent in the two intervening structures—the cuneate nucleus
(CN) and the thalamus. To test this hypothesis, we recorded the
responses evoked in the CN to a battery of stimuli that have been
extensively used to characterize tactile coding in both the periph-
ery and cortex, including skin indentations, vibrations, random dot
patterns, and scanned edges. We found that CN responses are
more similar to their cortical counterparts than they are to their
inputs: CN neurons receive input from multiple classes of nerve
fibers, they have spatially complex receptive fields, and they
exhibit selectivity for object features. Contrary to consensus, then,
the CN plays a key role in processing tactile information.

touch j neural coding j receptive fields j vibration j integration

The coding of tactile information has been extensively stud-
ied in the peripheral nerves and in the primary somatosen-

sory cortex (S1, Brodmann’s area 3b) of nonhuman primates,
leading to the conclusion that sensory representations in S1 dif-
fer from those at the periphery in at least two important ways.
First, while cutaneous nerve fibers can be divided into a small
number of classes each responding to a different aspect of skin
deformation (1–3), individual S1 neurons integrate sensory sig-
nals from multiple classes of nerve fibers (4–7). Indeed, while
each class of nerve fibers exhibits stereotyped responses to cer-
tain stimulus classes, for example, skin indentations or sinusoi-
dal vibrations, cortical responses to these same stimuli include
features of the responses from multiple tactile classes or sub-
modalities. Second, the responses of cortical neurons reflect
computations on these inputs. For example, the spatial recep-
tive fields (RFs) of S1 neurons comprise excitatory and inhibi-
tory subfields, implying a spatial computation (8, 9). Similarly,
S1 neurons act as temporal filters, as evidenced by the fact that
their responses to vibrations reflect both integration and differ-
entiation of their inputs in time (10). These computations give
rise to increasingly explicit rate-based representations of object
features, such as the orientation of an edge indented into the
skin or the texture of a surface scanned across the skin (5, 8).

In contrast to the well-studied peripheral and cortical repre-
sentations of touch, comparatively less is known about the
contribution of the cuneate nucleus (CN) to the processing of
tactile information. The textbook view is that the CN acts as a
simple relay station despite the fact that the response properties

of neurons in the CN or equivalent brain structures (e.g.,
nucleus principalis) exhibit responses that are not identical to
those of nerve fibers (11–15), implying some processing. How-
ever, CN responses have not been investigated using stimuli
whose representation in the nerve and cortex has been quantita-
tively characterized (12, 13, 16, 17). This precludes a quantitative
analysis of how tactile signals are transformed in this structure.

To fill this gap, we recorded the responses evoked in individual
CN neurons to a battery of tactile stimuli that have been exten-
sively used to characterize the response properties of tactile nerve
fibers and of neurons in S1, including skin indentations, vibra-
tions, embossed dot patterns, and scanned edges. We then
compared CN responses to their upstream (nerve fibers) and
downstream counterparts [Brodmann’s area 3b or S1, the first
stage of processing in the cortex (18, 19)] to assess the degree to
which tactile signals are processed in the CN. The picture that
emerges is one in which the CN plays an integral part in the
transformation of tactile information as it ascends the neuraxis.

Results
To investigate tactile representations in the CN, we measured
the responses of individual CN neurons (n = 33) to step inden-
tations, sinusoidal skin vibrations (n = 68), mechanical noise
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(n = 33), random dot patterns (n = 31), and scanned bars
(n = 9). To compare CN responses to their peripheral counter-
parts, we analyzed previously collected afferent responses to skin
indentations and simulated the spiking responses of tactile nerve
fibers to the vibratory stimuli used in the CN recordings using a
model that can reconstruct such responses with millisecond-level
precision (20). To compare CN responses to their cortical coun-
terparts, we analyzed previously collected cortical responses to
analogous stimuli.

Adaptation Properties of CN Neurons Reveal Submodality
Convergence. Nerve fibers can be readily divided into two
groups based on their responses to skin indentations: Slowly
adapting type 1 (SA1) fibers respond throughout the skin inden-
tation, whereas rapidly adapting (RA) and Pacinian
corpuscle–associated (PC) fibers respond only to the onset and
offset of the indentation and are silent during the intermediate
sustained epoch (6). Examination of the responses of down-
stream neurons to skin indentations can thus reveal the submo-
dality composition of their inputs. Specifically, responses during
the sustained component reflect SA1 input, as only this class is
active during this stimulus epoch; a strong phasic response dur-
ing the offset of the indentation is indicative of RA or PC input,
as only these two classes of nerve fibers produce an off response.
Co-occurrence of these two response properties reflects conver-
gent input from at least two classes of nerve fibers. In the CN,
we found that the responses of a majority of neurons comprise
both sustained and off components, indicative of convergent
input from multiple submodalities (Fig. 1A).

A previously developed “adaptation index” (AI, ref. 6) gauges
the degree to which individual neurons receive convergent input
from multiple cutaneous submodalities based on the relative
strengths of the sustained and off responses. A value of 1
denotes RA-like responses (only an off response, no sustained
response), a value of 0 denotes SA1-like responses (only a sus-
tained response, no off response), and an intermediate value
denotes convergent input (mixture of sustained and off
responses). Adaptation indices computed on CN responses
spanned the range from 0 to 1, with most falling between the
two extremes, suggesting that convergence is the rule rather
than the exception (Fig. 1B). Indeed, the AI distribution in the
CN was equivalent to that in S1 (Kolmogorov–Smirnov test; D
= 0.218 and P = 0.19) and significantly different from that at the
periphery (KS test; D = 0.545 and P < 0.001). A greater number
of neurons exhibited pure RA-like than SA1-like responses, as
has been found in S1, commensurate with the relative densities
of these two groups of nerve fibers (RA/PC versus SA1). To
obtain a quantitative estimate of the proportion of multimodal
neurons, we tested whether the firing rates during the sustained
and offset periods were significantly different from the baseline
period. Of the 33 neurons tested with skin indentations, 6% pro-
duced only sustained responses, 27% only offset responses, and
60% produced both sustained and offset responses (the remain-
ing 7% only produced a transient onset response). Convergence
of cutaneous submodalities is thus observed in a majority of neu-
rons in the CN.

CN Responses to Vibrations Reveal Submodality Convergence.
Next, we examined the responses of CN neurons to sinusoidal
vibrations varying in amplitude and frequency, leveraging the
fact that different afferent classes exhibit different frequency
sensitivity: SA1 fibers peak in sensitivity at low frequencies, PC
fibers at high frequencies, and RA fibers at intermediate fre-
quencies (3, 21). We can then assess whether the frequency
response characteristic of individual CN neurons resembles
that of any single class of tactile nerve fiber or rather reflects
convergent input from multiple fiber types. We found that
some CN neurons respond exclusively to low frequencies,

Fig. 1. CN responses to step indentations. (A) Responses of four CN neu-
rons that span the range of convergence properties. (B) The AI for the
nerve (Top), CN (Middle), and the primary somatosensory cortex (Bottom).
AI segregates nerve fibers at the two extremes, whereas convergence is
observed in both the CN and S1.
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similar to SA1 fibers (Fig. 2A), and others to high frequencies,
similar to PC fibers (Fig. 2B), but many respond to the entire
range of frequencies tested (Fig. 2C), suggesting they receive
convergent input from multiple tactile submodalities.

To quantitatively assess the contributions of different affer-
ent classes to the responses of CN neurons, we regressed the
firing rates of individual CN neurons onto the (simulated) pop-
ulation firing rates of nerve fibers from all three classes to a
common set of vibrations (Fig. 3A). First, we verified that the
responses of most CN neurons could be well accounted for
using a linear combination of SA1, RA, and PC responses
(mean R2 = 0.6). Second, we assessed whether CN responses
were better accounted for by multiple afferent classes than by
one and found that, for most CN neurons, the cross-validated
model fit increased significantly with the inclusion of all inputs
(Fig. 3A; mean R2

best = 0.50, mean R2
all = 0.60, mean ΔR2 =

0.1, ranksum = 5,395, z = 3.2, and P = 0.0013). We repeated
the regression analysis on measured responses of tactile nerve
fibers to similar sinusoidal vibrations to verify our ability to dis-
tinguish unimodal from multimodal responses. We found that
measured afferent responses to vibrations were equally well
accounted for with a single modality as they were multiple
modalities (Fig. 3A; mean R2

best = 0.83, mean R2
all = 0.86,

mean ΔR2 = 0.03, ranksum = 1,019, z = 1.53, and P = 0.126).
We found that 46% of CN neurons yielded ΔR2 that were
more than one SD away from the mean ΔR2 obtained from
nerve fibers, whereas only 10% of nerve fibers exceeded this
threshold.

Third, we estimated the number of afferent inputs required
to predict CN responses accurately. To this end, we simulated

the responses of a population of nerve fibers and assessed our
ability to predict the responses of individual CN neurons as we
sequentially added simulated nerve fibers to the regression
model (Fig. 3B). We found that model fits typically leveled off
(reached criterion performance) with just two to five inputs if
all three classes of nerve fibers were included in the analysis. If
only the most predictive afferent class was included, more
inputs were required to achieve equivalent fits and performance
plateaued at a lower level, consistent with the analysis based on
mean (simulated) population responses (Fig. 3B; dashed line).
Including all three afferent classes as regressors significantly
improved CN predictions (mean ΔR2 = 0.06 at criterion, rank-
sum = 5,518, z = 3.07, and P = 0.002). We validated the
approach by verifying that including all three classes did not
improve afferent predictions (mean ΔR2 = 0.01 at criterion,
ranksum = 977, z = 0.90, and P = 0.36). Examination of the opti-
mized regression coefficients revealed that 15% of CN neurons
were unimodal, 59% were bimodal, and the remainder (26%)
were trimodal (Fig. 3C). In conclusion, then, the responses of
individual CN neurons to vibrations reflect input from multiple
classes of nerve fibers, so the submodality convergence observed
in the cortex is at least in part inherited from the CN.

CN Responses to Vibrations Reveal Temporal Computations. Neu-
rons in the somatosensory cortex have been shown to exhibit a
variety of response properties to vibrations (10). Some neurons
sum their inputs over time, whereas others act as more complex
temporal filters, comprising both excitatory and suppressive
components. Examination of the rate-intensity functions for
vibrations revealed suppressive components in the neuronal

Fig. 2. CN responses to vibrations. (A–C) Responses of three CN neurons to skin vibrations varying in frequency (from 5 to 300 Hz) and amplitude (1 to
1,000 μm; ordered by frequency, then amplitude). Some CN neurons responded exclusively at low frequencies (A), others at high frequencies (B), but
many CN neurons responded over a wider range of frequencies than any single population of nerve fibers (C). As is the case in the periphery and cortex,
CN neurons often exhibited phase-locked responses to vibratory stimuli (SI Appendix, Fig. S1C).
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response (SI Appendix, Fig. S1): Some CN neurons were always
suppressed by vibration, whereas others were excited by some
vibrations and suppressed by others. For these neurons, regres-
sion models yielded significantly poorer fits when weights were
constrained to be positive (mean 22% decrease). These sup-
pressive components may constitute building blocks of more
complex temporal feature filtering.

To further characterize the process of temporal integration,
we examined CN responses to mechanical noise. Specifically,
we computed the mean response evoked in each afferent class
immediately preceding each spike evoked in a given CN neuron
(Fig. 4). The resulting spike-triggered averages (STAs) repre-
sent how a neuron integrates the signal from each population
of nerve fibers. Some neurons simply summed their afferent
input, whereas others exhibited more complex response proper-
ties, with STAs that comprised excitatory and suppressive
components similar to those derived from S1 responses to anal-
ogous stimuli. As is the case in the cortex, PC input tended to
be more suppressive than was RA or SA1 input (Fig. 4C). Tem-
poral RFs that comprise excitatory and suppressive components

confer to neurons a preference to fluctuations in the afferent
input; heterogeneity in the filters across neurons and input clas-
ses (cf. ref. 10) gives rise to a high-dimensional rate-based rep-
resentation of the input (5).

From CN responses to mechanical noise, we also estimated
the mean latency in the CN to be around 10 ms (Fig. 4D),
approximately half of that in S1 (∼18 ms).

Spatial Structure of CN RFs. Neurons in the somatosensory cortex
act not only as temporal filters (10) but also as spatial filters (5,
8, 9). The spatial RFs of S1 neurons comprise excitatory and
inhibitory subfields, conferring to them a sensitivity to specific
spatial features in their inputs. For example, an elongated excit-
atory subfield flanked by an inhibitory one will confer to a neu-
ron a selectivity for orientation (8, 22).

With this in mind, we reconstructed the spatial RFs of CN
neurons from their responses to random patterns of embossed
dots scanned across the skin (cf. refs. 5 and 9). First, we found
that the RFs of CN neurons tend to be larger than are those of
SA1 or RA fibers (23) as expected, given the inferred

Fig. 3. CN responses to vibrations reflect convergent input from multiple afferents, typically of multiple classes. (A) Model fit with only one class of nerve
fibers versus model fit with multiple classes for CN and afferents. The measured responses of nerve fibers can be predicted nearly perfectly from the simu-
lated responses of a single afferent type, whereas CN neurons often require multiple. (Inset) Model improvement when allowing all classes is significantly
greater for cuneate than individual afferents. For this analysis, the mean response to each stimulus is used as a regressor computed separately for each
class of nerve fibers. (B) Performance of regression models as a function of the number of afferents included in the analysis. Input from two to five nerve
fibers is sufficient to achieve asymptotic performance for CN predictions, but only if convergence across submodalities is allowed. When only the best sin-
gle afferent class is used (dashed line), an order of magnitude more afferents are required to reach asymptotic performance. (Inset) At criterion, model
performance is significantly improved when all afferent classes are included as regressors in models of CN responses. (C) Normalized regression weights
for each afferent class; each point denotes a CN neuron.

Fig. 4. Temporal integration properties of CN neurons. (A) STAs computed from the responses of three CN neurons for inputs from the three classes of
nerve fibers. STAs comprise both excitatory and suppressive components, as do their counterparts derived from the responses of S1 neurons. (B) Summed
absolute spike probability for each CN neuron with respect to afferent type. Given the frequency composition of the vibrations, the RA and PC drives
were greater than the SA1 drive. (C) Proportion of the afferent input that is excitatory versus suppressive. The temporal RFs of many CN neurons included
both excitatory and suppressive components. (D) The latency, estimated from responses to mechanical noise, was about half of that in S1.
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convergence of afferent input onto individual CN neurons (Fig.
5A and C). Second, CN neurons have marginally smaller RFs
than do their cortical counterparts (Fig. 5C and D) as expected,
given their relative positions along the neuraxis. The mean RF
size is 7.2 mm2 in the CN and 9.9 mm2 in the cortex [t test: t
(44) = 2.8; P = 0.072]. Third, CN neurons have complex RFs,
often comprising excitatory and inhibitory subfields, like their
cortical counterparts (Fig. 5A and B). As in the cortex, the
excitatory subfields of CN neurons tend to be larger than their
inhibitory counterparts. However, CN RFs tend to comprise a
greater number of distinct subfields than do their S1 RFs
[mean of 4 versus 2.1 mm2; t (44) = 4; P < 0.001]. While the
excitatory masses are similar in the CN and S1, the inhibitory
masses are smaller in the CN than in S1 [excitatory: 5.6 versus
6.6 mm2; t (44) = 1.37; P = 0.178; inhibitory: 1.5 versus 3.3
mm2; t (44) = 2.8; P < 0.008]. Nonetheless, the spatial structure
of the RFs observed in the CN is qualitatively similar to its
counterpart in S1.

CN Neurons Exhibit Feature Selectivity. Next, we examined whether
the spatial structure of RFs confer to the firing rate responses
of CN neurons a selectivity for specific geometric features as it
does in the cortex but not the periphery. To this end, we mea-
sured the responses of CN neurons to oriented edges scanned
across their RFs. We found that the firing rates of a subset of
CN neurons are modulated by orientation (Fig. 6A and SI
Appendix, Fig. S2), responding more strongly to edges at some
orientations than others. Some neurons are also modulated by
direction of movement, responding strongly to a bar scanned in
one direction but less so to the same bar scanned in the oppo-
site direction (top right and bottom left neurons in Fig. 6A).
We quantified the strength of the orientation tuning using a
metric—the orientation selectivity index (OSI)—that takes on a
value of 1 when a neuron responds only to a single orientation
and 0 when it responds uniformly to all orientations. The
degree of orientation selectivity in the CN is intermediate
between that seen in the nerve—where none exists—and in the

cortex (Fig. 6B). Therefore, the feature selectivity observed in
the cortex is, to some extent, inherited from its inputs.

Discussion
The objective of the present study was to characterize the tac-
tile representation in the CN and to assess the degree to which
CN responses reflect computations on their inputs. To these
ends, we probed CN responses using stimuli whose representa-
tion in the peripheral nerve has been extensively characterized,
allowing us to disentangle derived response properties from
those inherited from the inputs. Any difference between nerve
and CN responses could then be attributed to computations
within the CN [or possibly to an intervening synapse in the spi-
nal cord (24–27)]. We found that CN neurons receive conver-
gent input from multiple tactile submodalities, exhibit spatial
and temporal filtering properties that had previously been
attributed to cortical processing, and are tuned for behaviorally
relevant object features. Comparison of CN responses to their
upstream and downstream counterparts suggests that the tactile
representation in the CN is more similar to its counterpart in
the cortex than it is to that in the nerve.

Submodality Convergence. Tactile nerve fibers that innervate the
glabrous skin of monkeys can be divided into three clearly
delineated classes, each with distinct response properties (18).
While each submodality might be more responsive to any one
stimulus feature, information about most features is distributed
over all three submodalities, and the resulting perceptual expe-
rience reflects this integration (7, 21, 28, 29). As might be
expected, then, the responses of individual S1 neurons typically
reflect convergent input from multiple classes of nerve fibers
(6). Where this integration might first take place was unclear,
however. Studies with cats suggested a lack of submodality con-
vergence in the CN (11, 30–33), whereas studies in rodents con-
clude that the trigeminal nucleus—a structure analogous to the
CN that receives inputs from the face—exhibits submodality
convergence at the single-cell level (14, 34, 35).

Fig. 5. Spatial RFs of CN neurons. (A) Reconstructed RFs for four CNs. RFs typically comprise both excitatory and inhibitory subfields in a variety of
conformations. Cuneate RFs are thus similar to their S1 counterparts (B). Arrow indicates the direction in which the dot pattern was scanned. (Scale bar,
1 mm.) (C) Cuneate RFs are, on average, smaller than those in S1 (D), a difference that is primarily driven by smaller inhibitory subfields. N
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Here, we show that the CN of primates features submodality
convergence. Indeed, the majority of CN neurons produce both
an SA1-like sustained response to the static component of a
skin indentation and an RA/PC-like phasic response at the off-
set of the indentation. Furthermore, individual CN neurons
tend to respond to a wider range of frequencies than do pri-
mary afferents of any one class. The submodality convergence
observed in the somatosensory cortex is thus, at least in part,
inherited from its inputs and begins at the earliest processing
stage along the dorsal column-medial lemniscus pathway.

Neural Computations. Tactile nerve fibers have small RFs that
consist of one or more excitatory hot spots (2, 36) and faithfully
encode local skin deformations (20). In contrast, S1 neurons
have larger RFs that comprise excitatory and inhibitory sub-
fields (5, 8, 9), which confer to them a selectivity for spatial
features in their inputs. Individual cortical neurons also act as
temporal filters (10), which confers to them a selectivity for
temporal features in their inputs. The idiosyncratic spatial and
temporal filtering properties of individual S1 neurons give rise
to a high-dimensional representation of the input in the
somatosensory cortex, in which different features of grasped
objects are explicitly encoded (5, 8, 9, 37, 38)

Here, we show that the spatial and temporal computations
observed in the cortex are also observed in the CN. First, the
spatial RFs of CN neurons comprise excitatory and inhibitory
subfields and, while somewhat smaller (as expected, since the
CN is upstream from the cortex), resemble their cortical coun-
terparts. Second, individual CN neurons process time-varying
inputs in a variety of different ways—ranging from integration
to differentiation—that are analogous to their cortical counter-
parts. The CN thus contributes to the processing of sensory
information, and CN neurons exhibit response properties that
are qualitatively similar to their counterparts in S1. We specu-
late that sensory signals undergo further transformations in the
thalamus, the next stage of processing along the dorsal column-
medial lemniscus pathway. More broadly, we hypothesize that
the CN and the thalamus are integral components to the gene-
sis of sensory representations that are suited to guide behavior.

Feature Selectivity. The spatiotemporal response properties of S1
neurons confer to them a preference for certain stimulus fea-
tures. For example, individual S1 neurons exhibit a selectivity for
the direction in which objects move across the skin (38, 39) or

idiosyncratic preferences for different surface textures (5).
Another well-documented feature selectivity in S1 is for oriented
edges: A large proportion of S1 neurons respond preferentially
to edges at a specific orientation (8). This orientation selectivity
is attributed to the neuron’s RF structure, which comprises excit-
atory and inhibitory subfields, analogous to neurons in the pri-
mary visual cortex (22). We show that CN neurons also exhibit
orientation selectivity, suggesting that some of the feature selec-
tivity observed in S1 is inherited from its inputs.

Feature extraction results in a sparsening of the stimulus rep-
resentation, which can result in an overall loss of information
(40), unless it is accompanied by an expansion of the size of the
neuronal population (41). Not surprisingly, the CN is estimated
to comprise three to five times more neurons than there are
nerve fibers that innervate the corresponding dermatomes, with a
preferential expansion of the representation of the hand (42–45),
also reflected in S1 (43) and consistent with observations in other
animals (17, 46, 47). The expanded neuronal representation in
the CN is consistent with its role in feature extraction.

Conclusions. The naıve textbook story is that the CN is a simple
relay station that does not effect any computations on its inputs
but rather transmits them unprocessed. The putative role of the
CN, if any, has been to provide an opportunity to modulate the
gain of the afferent input depending on its behavioral relevance
via top-down signals (16, 48). In addition, plastic changes in the
CN following amputation account for the resulting changes in
activation patterns in somatosensory cortex (26, 49–52). We show
that, in addition to this gain modulation and susceptibility to plas-
ticity, the responses of CN neurons reflect a significant transfor-
mation of their afferent inputs, conferring to them properties that
were heretofore attributed solely to the cortex. The CN is thus an
active contributor to the process by which ambiguous signals
from the periphery are converted into sensory representations
that support robust and meaningful percepts and guide behavior.

Methods
Neurophysiology.
Animals and surgical preparation. Neuronal responses were obtained from
seven rhesus macaques (five males and two females, 4 to 14 y of age, 4 to 12
kg). Monkeys were anesthetized and placed in a stereotaxic frame with their
neck flexed at 90 degrees to provide access to the dorsal brain stem. The fora-
men magnum was exposed, and the inferior aspect of the occipital bone was
removed. The dura above the obex was resected to reveal the brain stem. All

Fig. 6. Orientation tuning in CN neurons. (A) Response of four example CN neurons to oriented edges. The angular coordinate denotes orientation, the
radial coordinate denotes firing rate, and the dashed circle denotes the firing rate averaged across conditions. (B) Cumulative distribution of the OSI
derived from the responses of nerve fibers, CN neurons, and S1 neurons. CN responses are more strongly tuned for orientation than are nerve fibers but
more weakly tuned than some S1 neurons.
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surgical procedures were approved and monitored by the Institutional Animal
Care and Use Committee and were consistent with federal guidelines. The
neurophysiological methods for the cortical and nerve fiber responses have
been previously described (6, 8, 53).
Neurophysiological recordings. Neuronal activity was monitored using
16-channel linear probes (V-Probe, Plexon) and amplified and stored using a
Cerebus system (BlackrockMicrosystems). Probes were positionedwith a stereo-
taxic system, using the obex as a landmark to locate the CN. Units with RFs on
the glabrous surface of the hand were isolated. Responses from 143 neurons
were obtained across experimental conditions. Hand mapping revealed that
themajority of isolated units had small RFs, confined to a single digit pad or pal-
mar whorl, with the exception of neurons that exhibited PC-like responses.

Anesthesia. All animals were induced with a combination of ketamine, dex-
medetomidine, and buprenorphine. Isoflurane (1 to 2%) was then delivered
continuously via inhalation and decreased during the neurophysiological
recordings. While anesthesia can have a profound impact on neural responses
(54–58), several observations suggest that the CN recordings were only mini-
mally impacted. First, the impact of anesthesia tends to be more pronounced
in the cortex (59). Given that the CN is the first recipient of afferent input itself
minimally affected by anesthesia (60), the impact of anesthesia on CN
responses, at least those driven by peripheral input, is likely minimal. Second,
certain anesthetics have been shown to affect the temporal response proper-
ties of neurons in the cortex (55). That we observe precise and repeatable
phase locking of CN responses to vibrations (SI Appendix, Fig. S1C) suggests
that the anesthesia did not affect the temporal precision of the responses.
Third, the CN has been shown to receive projections from the cortex (16, 48),
and this top-down drive is almost certainly abolished or at least strongly
altered under anesthesia. Note, however, that the cortical modulation of cuta-
neous responses in the CN seems to be primarily suppressive (16) under condi-
tions for which this input may be disruptive (61). The similarity between the
responses of CN neurons under anesthesia and those of S1 neurons monitored
in awake animals implies that CN responsivity is relatively unaffected by anes-
thesia. Finally, in a previous series of experiments described in ref. 62, we
recorded responses of three CN neurons to sinusoidal vibrations and found
that vibratory thresholds were qualitatively similar (SI Appendix, Fig. S3).

Tactile Stimulation. We presented five classes of stimuli–skin indentations,
sinusoidal vibrations, bandpass mechanical noise, scanned random dot pat-
terns, and scanned edges—each with precisely controlled speed, force, fre-
quency, and/or amplitude. In some cases, multiple stimulus classes were
delivered while recording from a given neuron. Indentations, sinusoids, and
noise stimuli were delivered with a probe (diameter = 1 mm) driven by a cus-
tom shaker motor (63) and preindented 0.5 mm into the skin. Scanned ran-
dom dots and edges were presented using a miniaturized version of the drum
stimulator (5, 29). Edges were presented using a custom stimulator that can
scan stimuli across the skin in different directions and whose third degree of
freedom allows for indentation into and retraction from the skin (see ref. 64).
Responses to skin indentation and sinusoids were collected from four mon-
keys (number of neurons = 33 and 68, respectively), responses to bandpass
noise and random dot patterns from two monkeys (n = 33 and 31), and
responses to edges from onemonkey (n = 9).
Skin indentations. The amplitude of the ramp and hold indentation was 1
mm, and their overall duration was 0.5 s, with on and off and ramps lasting 25
ms and separated by a 0.5-s interval. Indentations were presented 100 times.
Sinusoids. Sinusoidal vibrations were delivered at seven frequencies (5 to 300
Hz) and 10 amplitudes, which spanned the achievable range at each fre-
quency, given the limitations of the stimulator. Each frequency–amplitude
combination, lasting 1 s, was presented five times in pseudorandom order,
separated by a 1-s interstimulus interval, for a total of 350 trials.
Bandpass mechanical noise. White Gaussian noise was filtered with different
high and low pass frequencies (low: 5 to 50 Hz; high: 10 to 200 Hz) to yield 10
unique stimuli (as previously described in ref. 21), each lasting 1 s and sepa-
rated by a 0.3-s interval.
Scanned random dot patterns. Random dot patterns were printed (Form 2,
Formlabs) on a drum (2.5-in diameter) using previously used geometries and
densities (cf. refs. 5 and 9). Patterns were repeatedly scanned across the skin at
80 mm/s. For the first scan, the edge of the pattern was aligned with the esti-
mated center of the RF and indented into the skin by 0.5 mm. For each of 100
subsequent scans, the drum was progressively translated by 0.4 mm along the
axis perpendicular to the axis of rotation.
Scanned edges. An edge (1-mm high, 1-mm wide, 0.25-mm chamfer) was
printed on a miniature drum (40-mm diameter), whose rotation was driven by
a rotational motor. The orientation of the drum on the skin was controlled by
a second rotational motor. A third motor controlled the vertical excursion of

the drum and allowed for it to be lifted in between changes in orientation.
The edge was scanned five times at 80 mm/s at each of 16 orientations (0 to
337.5 degrees with 22.5-degree spacing).

Data Analysis.
Adaptation index. The adaptation index (6) indicates the relative firing rate
of the sustained and offset periods. SA1 afferents respond to the onset and
sustained period, while RA and PC afferents respond to the onset and offset
transient periods. Thus, the submodality composition of the inputs of a down-
stream neuron can be measured by taking the ratio of the offset and
sustained period. The baseline firing rate was subtracted from both the com-
puted sustained (frsus) and offset (froff) firing rates (measured between 0.275
and 0.375 and 0.505 and 0.605 s, respectively). The adaptation index was then
computed as follows:

ai ¼ j tan�1 froff
frsus

� �
� 2

π
j :

Afferent convergence. Given that each class of nerve fibers exhibits a unique
frequency response characteristic, we sought to determine if the cuneate
responses could be explained by linear combinations of inputs from the three
afferent classes. To this end, we simulated the responses of each afferent type
to the sinusoidal stimuli used in this study. For this, we used TouchSim, a
model that yields millisecond precision reconstructions of the responses of
every tactile nerve fiber that innervates the glabrous skin of the hand to arbi-
trary stimuli delivered to the skin (20). The firing rates evoked by each stimulus
were then averaged across afferents of the same type. For each cuneate neu-
ron, we used linear regression in the following form:

frcn ¼ φ0 þ φ1frSA1 þ φ2frra þ φ3frpc:

We compared the performance of the full model to that of models that only
included one class of nerve fibers. We assessed model performance using five-
fold cross-validation to ensure that models with more parameters did not
outperform simpler models due to overfitting. We then compared the best-
performing single-afferent model to that of the full model for each neuron.

To estimate the number of afferents that contribute to the CN response,
we performed a regression analysis using the firing rates of individual nerve
fibers as regressors. We then used a stepwise linear regression process to
determine the optimal combination of inputs. Briefly, on the first iteration,
we selected the nerve fiber that had the highest correlation with the CN
response. During each subsequent step, we measured the increase in correla-
tion when adding every other afferent in the population, either across classes
or within class.We then incorporated the fiber that most improved the regres-
sion performance. We proceeded until the addition of an additional regressor
failed to improve the model fit more than 5%. To determine the relative con-
tributions of each afferent type to the CN response, we summed the absolute
regression coefficient within afferent type and normalized by the summed
absolute regression values across afferent types.
Spike-triggered average—transfer function. Responses to mechanical noise
can be used to estimate the transfer function of a neuron (10, 65). Accord-
ingly, we simulated the responses of all the nerve fibers that innervate the
glabrous skin of the hand to the bandpassmechanical noise used in the neuro-
physiological experiments and averaged their responses across fibers of each
class. We then performed an STA (65) of the response of each afferent condi-
tioned on each spike in the CN. That is, the response of each afferent popula-
tion over the 100 ms preceding each CN spike was averaged across CN spikes.
The resulting filter was smoothed using a Gaussian filter (SD = 5 ms), and the
baseline firing rate was subtracted. We then standardized the resultant filter
for each cuneate–afferent pair with respect to the period between 100 and 50
ms before the cuneate spike, which we expect to reflect noise. We then
thresholded (z > 2) the z-scored probabilities and computed the magnitude
and width of the filters.
Harmonic ratio. To determine the extent to which CN responses to sinusoids
were phase locked, we computed the harmonic ratio of the response to each
stimulus. Excluding responses with fewer than five spikes, we performed a
Fast Fourier transform of the peristimulus spike histogram (binned at 1/5f),
averaged the mean amplitude at the fundamental frequency (Af) and its first
harmonic (Ah1), and divided the resulting value by the median amplitude
across all frequencies (~A):

hr ¼ Af þ Ah1ð Þ=2
~A

,

where

A ¼ j real FFT xð Þ½ � þ imag½FFT xð Þ� j � 1=fs:

We repeated this analysis for Poisson spike trains to obtain a distribution of
harmonic ratios for responses that lack periodicity.
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Spatial RFs. We used standard techniques to estimate the spatial RF of each
cuneate neuron (cf. refs. 5 and 9). In brief, we averaged the 16 mm × 16 mm
swath of the random dot pattern that impinged on the skin at the time of
each cuneate spike. To remove the curvature of the drum reflected in the
resulting STA, we subtracted a second-order polynomial plane from it. The
resultant STA was then standardized and thresholded to isolate excitatory
and inhibitory lobes.

To identify the number of subfields for cortical and cuneate RFs, we fitted
two-dimensional Gaussians to each RF. Each Gaussian subfield had the follow-
ing form:

G x, yð Þ ¼ a � eð� 1
2 ðLΣ�1LT ÞÞ,

where L¼ x� μx , y� μy
h i

, Σ¼ CovMatðσx , σy , θÞ, a is the amplitude (a > 0
denotes an excitatory patch, a < 0 an inhibitory one), (x, y) denote the
medial–lateral and proximal–distal locations on the skin surface, respectively,
(μx , μyÞ represent the center of the Gaussian, ðσx , σyÞ its SDs along the two
axes, and θ its orientation.

Therefore, every RF is described by a total of N × 6 parameters (six parame-
ters for each Gaussian component: a,μx,μy ,σx ,σy , and θ; and N Gaussian
components). Nonlinear least-squares optimization was used to find the best
parameters. N represents the minimum number of Gaussian subfields needed
to achieve R2 > 0.9 of 90% of the maximum achievable R2.

Orientation tuning. Spiking responses evoked at each orientation were
aligned to a reference stimulus trace consisting of six Gaussians spaced accord-
ing to the stimulus speed. The spike rate evoked by the stimulus, centered
around the peak response, was averaged over a window of 314 ms, corre-
sponding to 6.2 mmof travel (5% of a complete rotation of the drum), though
the window size did not affect the results over a wide range (SI Appendix, Fig.
S2). The tuning of each neuron was gauged using an orientation selectivity
index (OSI), given by

OSI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ðRφ � sin 2φð ÞÞ2 þ ðRφ � cos 2φð ÞÞ2

∑Rφ

s
,

where φ is the orientation of the stimulus and Rφ is the firing rate at that ori-
entation. Reliability of the OSI was tested using a permutation test, for which
neural responses were shuffled 10,000 times and the OSI recomputed.

Data Availability. All data and code for analyses and generation or figures can
be found at Figshare (https://doi.org/10.6084/m9.figshare.15054294.v1) (66) .
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